CMOS 16-bit Single Chip Microcomputer

Description

The CXP922P032 is a CMOS 16-bit microcomputer integrating on a single chip an A/D converter, serial interface, timer, remote control receive circuit, PWM output circuit, and as well as basic configurations like a 16-bit CPU, PROM, RAM, and I/O port.
This LSI also provides the sleep/stop functions that enable lower power consumption.
The CXP922P032 is the PROM-incorporated version of the CXP922032 with built-in mask ROM.
 This provides the additional feature of being able to write directly into the program. Thus, it is most suitable for evaluation use during system development and for small-quantity production.

Features

- An efficient instruction set as a controller
- Direct addressing, numerous abbreviated forms, multiplication and division instructions
- Instruction sets for C language and RTOS
- Highly quadratic instruction system, general-purpose register of eight 16 -bit $\times 16$-bank configuration
- Minimum instruction cycle $100 \mathrm{~ns} / 20 \mathrm{MHz}$ operation (3.0 to 5.5 V) $167 \mathrm{~ns} / 12 \mathrm{MHz}$ operation (2.7 to 5.5 V)
- Incorporated PROM capacity 128 K bytes
- Incorporated RAM capacity 7680 bytes
- Peripheral functions
- A/D converter
- Serial interface
- Timers
- Remote control receive circuit
- PWM output circuit
- Interruption
- Standby mode
- Package
- Piggy/evaluation chip
- Mask ROM

8 -bit 8 analog input, successive approximation system
(Conversion time: $12.4 \mu \mathrm{~s}$ at 20 MHz)
Asynchronous serial interface (Simple UART) 128-byte buffer RAM, 3 channels
8 -bit timer/counter, 2 channels (with timing output)
16 -bit capture timer/counter (with timing output)
16-bit timer, 4 channels
8 -bit pulse measurement counter, 8 -stage FIFO
14-bit, 1 channel
24 factors, 24 vectors, multi-interruption and priority selection possible Sleep/stop
100-pin plastic QFP
CXP922000
CXP922032

Structure

Silicon gate CMOS IC any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Pin Assignment (Top View) 100-pin QFP package

Notes) 1. Do not make any connections to VPP (Pin 88).
2. Vss (Pins 15, 41, 64 and 90) must be connected to GND.
3. VDd (Pins 44 and 89) must be connected to Vdd.

Pin Functions

Symbol	I/O	Functions		
PA0 to PA7	I/O	(Port A) 8-bit I/O port. I/O can be specified in 1-bit units. Pull-up resistor is present or not through program in 4-bit units. (8 pins)		
PB0 to PB7	I/O	(Port B) 8-bit I/O port. I/O can be specified in 1-bit units. Pull-up resistor is present or not through program in 4-bit units. (8 pins)		
PC0 to PC7	I/O	(Port C) 8-bit I/O port. I/O can be specified in 1-bit units. Pull-up resistor is present or not through program in 4-bit units. (8 pins)		
PD0 to PD7	I/O	(Port D) 8-bit I/O port. I/O can be specified in 1-bit units. Pull-up resistor is present or not through program in 4-bit units. Can drive 12 mA sink current ($\mathrm{VDD}=4.5$ to 5.5 V). (8 pins)		
PE0 to PE7	I/O	(Port E) 8-bit I/O port. I/O can be specified in 1-bit units. Pull-up resistor is present or not through program in 4-bit units. Can drive 12 mA sink current (VDD $=4.5$ to 5.5 V). (8 pins)		
PFO/INTO to PF4/INT4	Input / Input	(Port F) 8-bit port. Lower 6 bits are for input; upper 2 bits are for output. (6 pins)	External interrupt inputs. (4 pins)	
PF5/NMI	Input / Input		Non-maskable interrupt input.	
PF6/TO0	Output / Output		8-bit timer/counter output.	
PF7/TO1/ PWM	Output / Output / Output		16-bit capture timer/ counter output.	14-bit PWM output.
ANO to AN3	Input	Analog input for A/D converter. (4 pins)		
PGO/AN4 to PG3/AN7	I/O / Input	(Port G) 8 -bit I/O port. I/O can be specified in 1-bit units. Pull-up resistor is present or not through program in 4-bit units. (8 pins)		Analog input for A/D converter. (4 pins)
PG4 to PG7	I/O			
CSO	Input	Serial chip select (CHO) input.		
SIO	Input	Serial data (CH0) input.		
SOO	Output	Serial data (CHO) output.		
SCK0	I/O	Serial clock (CH0) I/O.		

Symbol	I/O	Functions	
PH0/CS1	I/O / Input	(Port H) 8-bit I/O port. I/O can be specified in 1-bit units. Pull-up resistor is present or not through program in 4-bit units. (8 pins)	Serial chip select (CH1) input.
PH1/SI1	I/O / Input		Serial data (CH1) input.
PH2/SO1	I/O / Output		Serial data (CH 1) output.
PH3/ $\overline{\text { CKK1 }}$	I/O / I/O		Serial clock (CH1) I/O.
PH4/ $\overline{\mathrm{CS} 2}$	I/O / Input		Serial chip select (CH2) input.
PH5/SI2	I/O / Input		Serial data (CH2) input.
PH6/SO2	I/O / Output		Serial data (CH2) output.
PH7/SCK2	I/O / I/O		Serial clock (CH2) I/O.
PI0/TxD	I/O / Output	(Port I) 8-bit I/O port. I/O can be specified in 1-bit units. Pull-up resistor is present or not through program in 4-bit units. (8 pins)	UART transmission data output.
Pl1/RxD	I/O / Input		UART reception data input.
PI2 to PI3	I/O		
P14/EC0	I/O / Input		External event input for 8-bit timer/counter.
P15/EC1	I/O / Input		External event input for 16-bit capture timer/ counter.
PI6/CINT	I/O / Input		External capture input for 16-bit capture timer/ counter.
PI7/RMC	I/O / Input		Remote control receive circuit input.
PJo/ $\overline{\text { KSO }}$ to PJ6/증	I/O / Input	(Port J) 7-bit I/O port. I/O can be specified in 1-bit units. Pull-up resistor is present or not through program in lower 4-bit units and upper 3-bit units. (7 pins)	Standby release input function can be specified in 1-bit units. (7 pins)
EXTAL	Input	Connects a crystal for system clock oscillation. (When the clock is supplied externally, input it to EXTAL and input an opposite phase clock to XTAL.)	
XTAL			
$\overline{\mathrm{RST}}$	Input	System reset. Active at "L" level.	
AVdd		Positive power supply for A/D converter.	
AVref	Input	Reference voltage input for A/D converter.	
AVss		GND for A/D converter.	
Vdo		Positive power supply. (Connect both VDD pins to positive power supply.)	
Vss		GND (Connect all four Vss pins to GND.)	
VPP		Positive power supply pin used for writing inorporated PROM. (Do not make any cunnection to NC.)	

I/O Circuit Format for Pins
Pin PAO to PA7

Pin	Circuit format	After a reset
PD0 to PD7		Hi-Z
PE0 to PE7		Hi-Z
PFO/INTO to PF4/INT4 PF5/NMI		Hi-Z

Pin	Circuit format	After a reset
PF6/TO0		"H" level
PF7/TO1/ PWM		"H" level ("H" level at ON resistance of pull-up transistor during a reset.)
ANO to AN3		Hi-Z

Pin	Circuit format	After a reset
PGo/AN4 to PG3/AN7		Hi-Z
PG4 to PG7		Hi-Z

Pin	Circuit format	After a reset
$\begin{aligned} & \overline{\mathrm{CSO}} \\ & \text { SIO } \end{aligned}$		Hi-Z
SOO		Hi-Z
$\overline{\text { SCKO }}$		"H" level (Hi-Z during a reset)
$\begin{aligned} & \mathrm{PH} 0 / \overline{\mathrm{CS1}} \\ & \mathrm{PH} 1 / \mathrm{SI} 1 \\ & \mathrm{PH} 4 / \overline{\mathrm{CS} 2} \\ & \mathrm{PH} / \mathrm{SI} 2 \end{aligned}$		Hi-Z

Pin	Circuit format	After a reset
$\begin{aligned} & \mathrm{PH} 2 / \mathrm{SO} 1 \\ & \mathrm{PH} 6 / \mathrm{SO} 2 \end{aligned}$		Hi-Z
$\begin{aligned} & \mathrm{PH} 3 / \overline{\mathrm{SCK} 1} \\ & \mathrm{PH} 7 / \overline{\mathrm{SCK} 2} \end{aligned}$		Hi-Z
PIO/TxD		Hi-Z

Pin	Circuit format	After a reset
$\begin{aligned} & \text { PI1/RxD } \\ & \text { PI4/EC0 } \\ & \text { PI5/EC1 } \\ & \text { PI6/CINT } \\ & \text { PI7/RMC } \end{aligned}$		Hi-Z
Pl2 to Pl3		Hi-Z
$\begin{aligned} & \mathrm{PJ0} / \overline{\mathrm{KSO}} \\ & \text { to PJ6/KS6 } \end{aligned}$		$\mathrm{Hi}-\mathrm{Z}$

Pin	Circuit format	After a reset
$\begin{aligned} & \text { EXTAL } \\ & \text { XTAL } \end{aligned}$		Oscillation
RST		"L" level (during a reset)

Absolute Maximum Ratings
(Vss = 0V reference)

Item	Symbol	Rating	Unit	Remarks
Supply voltage	Vdd	-0.3 to +7.0	V	
	Vpp	-0.3 to +13.0	V	Unique to version with incorporated PROM
	AVDd	AV ss to +7.0 * ${ }^{\text {d }}$	V	
	AVREF	AVss to +7.0	V	
	AVss	-0.3 to +0.3	V	
Input voltage	VIn	-0.3 to +7.0 *2	V	
Output voltage	Vout	-0.3 to $+7.0 * 2$	V	
High level output current	Іон	-5	mA	Output (value per pin)
High level total output current	$\sum \mathrm{loh}$	-50	mA	Total for all output pins
Low level output current	IoL	15	mA	All pins excluding large current output pins (value per pin)
	IoLC	20	mA	Large current output pins*3 (value per pin)
Low level total output current	EloL	130	mA	Total for all output pins
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	
Allowable power dissipation	Pd	600	mW	QFP-100P-L01

*1 AVDD must be the same voltage.
*2 VIn and Vout must not exceed VdD + 0.3V.
*3 The large current drive transistor is N -ch transistor of PD and PE.
Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should be conducted under the recommended operating conditions. Exceeding these conditions may adversely affect the reliability of the LSI.

Recommended Operating Conditions
(Vss = OV reference)

Item	Symbol	Min.	Max.	Unit	Remarks	
Supply voltage	VDD	3.0	5.5	V	$\mathrm{fEX}=20 \mathrm{MHz}$ or less	Guaranteed operation range for 2, 4 and 8 frequency dividing clocks
		2.7	5.5	V	$\mathrm{fEX}=12 \mathrm{MHz}$ or less	
		2.7	5.5	V	Guaranteed operation range for $1 / 16$ frequency dividing clock or sleep mode	
		2.5	5.5	V	Guaranteed data hold range during stop mode	
	AVdd	2.7	5.5	V	* ${ }^{1}$	
	AVref	2.7	5.5	V		
High level input voltage	VIH	0.7 VdD	VDD	V	*2, *4	
		0.8VdD	VDD	V	*2, *5	
	VIHS	0.8 VdD	VdD	V	CMOS Schmitt input*3	
	Vihex	0.7Vdd	VDD +0.3	V	EXTAL	
Low level input voltage	VIL	0	0.3Vdd	V	*2, *4	
		0	0.2Vdd	V	*2, *5	
	VILS	0	0.2Vdd	V	CMOS Schmitt input*3	
	Vilex	-0.3	0.3Vdd	V	EXTAL*4	
		-0.3	0.2Vdd	V	EXTAL*5	
Operating temperature	Topr	-20	+75	${ }^{\circ} \mathrm{C}$		

*1 AVDD and VDD must be the same voltage.
*2 PA, PB, PC, PD, PE, PG, PH2, PH6, PI0, PI2, PI3, PJ for normal input port.
*3 PF0 to PF5, PH0, PH1, PH3 to PH5, PH7, PI1, PI4 to PI7, $\overline{\mathrm{CS} 0}, \mathrm{SIO}, \overline{\mathrm{SCK}}, \overline{\mathrm{RST}}$.
${ }^{*} 4$ When the supply voltage (VDD) is within the range of 4.5 to 5.5 V .
*5 When the supply voltage (VDD) is within the range of 2.7 to 5.5 V .

Electrical Characteristics

DC Characteristics (VDD $=4.5$ to 5.5 V)
(Topr $=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
High level output voltage	Vor	PA to PE, PF6, PF7, PG to PJ, SOO, SCKO	$\mathrm{V} \mathrm{DD}=4.5 \mathrm{~V}, \mathrm{loH}=-0.5 \mathrm{~mA}$	4.0			V
			$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{IoH}=-1.2 \mathrm{~mA}$	3.5			V
Low level output voltage	Vol	PA to PE, PF6, PF7, PG to PJ, SOO, SCKO	$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=1.8 \mathrm{~mA}$			0.4	V
			$\mathrm{V} D \mathrm{LD}=4.5 \mathrm{~V}, \mathrm{loL}=3.6 \mathrm{~mA}$			0.6	V
		PD, PE	$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=12.0 \mathrm{~mA}$			1.5	V
Input current	IIne	EXTAL	$\mathrm{V}_{\text {DD }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5.5 \mathrm{~V}$	0.5		40	$\mu \mathrm{A}$
	Ille		VdD $=5.5 \mathrm{~V}, \mathrm{~V}$ IL $=0.4 \mathrm{~V}$	-0.5		-40	$\mu \mathrm{A}$
	IILR	RST ${ }^{*}$	Vdd $=5.5 \mathrm{~V}, \mathrm{~V}$ IL $=0.4 \mathrm{~V}$	-1.5		-400	$\mu \mathrm{A}$
	IIL	$\begin{aligned} & \text { PA to } \mathrm{PE}^{* 2} \\ & \text { PG to } \mathrm{PJ}^{* 2} \end{aligned}$	Vdd $=5.5 \mathrm{~V}, \mathrm{~V}$ IL $=0.4 \mathrm{~V}$			-45	$\mu \mathrm{A}$
			$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{~V} \mathrm{IH}=4.0 \mathrm{~V}$	-2.78			$\mu \mathrm{A}$
I/O leakage current	IIz	PA to $\mathrm{PE}^{* 2}$, PF0 to PF5, PF7, PG to $\mathrm{PJ}^{* 2}$, AN0 to AN3, CSO, SIO, $\text { SOO, } \overline{\text { SCKO }}$ RST^{*}	$\mathrm{V} D \mathrm{D}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0,5.5 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
Supply current*3	IDD*4	Vdd, Vss	$\mathrm{VDD}=5 \pm 0.5 \mathrm{~V},$ 20 MHz crystal oscillation $\left(\mathrm{C}_{1}=\mathrm{C}_{2}=10 \mathrm{pF}\right)$		45	75	mA
	IDDS1		$V D D=5 \pm 0.5 \mathrm{~V}$ 20MHz crystal oscillation ($\mathrm{C}_{1}=\mathrm{C}_{2}=10 \mathrm{pF}$), sleep mode		8	14	mA
	IDDS2		VDD $=5.5 \mathrm{~V}$, stop mode			10	$\mu \mathrm{A}$
Input capacitance	Cin	PA to PE, PF0 to PF5, PG to PJ, AN0 to AN3, CSO, SIO, SCKO, EXTAL, $\overline{R S T}$	Clock 1 MHz OV for all pins excluding measured pins		10	20	pF

*1 $\overline{\mathrm{RST}}$ specifies the input current when pull-up resistor has been selected; the leakage current when no resistor has been selected.
*2 PA to PE and PG to PJ specify the input current when pull-up resistor has been selected; the leakage current when no resistor has been selected.
*3 When all output pins are open.
${ }^{* 4}$ When the upper two bits (PCK1, PCK0) of the clock control register (CLC: 0002FEh) are set to "00" and the LSI is operated in high-speed mode (2 frequency dividing clock).

DC Characteristics (VDD $=3.0$ to 3.6 V)
(Topr $=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{V}$ ss $=0 \mathrm{~V}$ reference)

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
High level output voltage	VOH	PA to PE, PF6, PF7, PG to PJ, SOO, SCKO	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{IOH}=-0.15 \mathrm{~mA}$	2.7			V
			$\mathrm{VDD}=3.0 \mathrm{~V}, \mathrm{IoH}=-0.5 \mathrm{~mA}$	2.3			V
Low level output voltage	Vol	PA to PE, PF6, PF7, PG to PJ, SOO, SCKO	$\mathrm{V} D \mathrm{DD}=3.0 \mathrm{~V}$, $\mathrm{lol}=1.2 \mathrm{~mA}$			0.3	V
			$\mathrm{V} D \mathrm{DD}=3.0 \mathrm{~V}$, $\mathrm{loL}=1.6 \mathrm{~mA}$			0.5	V
		PD, PE	$\mathrm{VDD}=3.0 \mathrm{~V}$, $\mathrm{lol}=5.0 \mathrm{~mA}$			1.0	V
Input current	IIne	EXTAL	V DD $=3.6 \mathrm{~V}, \mathrm{~V} \mathrm{IH}=3.6 \mathrm{~V}$	0.3		20	$\mu \mathrm{A}$
	IILE		$\mathrm{V} D \mathrm{D}=3.6 \mathrm{~V}, \mathrm{~V}$ IL $=0.3 \mathrm{~V}$	-0.3		-20	$\mu \mathrm{A}$
	IILR	$\mathrm{RST}^{* 1}$	VDD $=3.6 \mathrm{~V}, \mathrm{VIL}=0.3 \mathrm{~V}$	-0.7		-200	$\mu \mathrm{A}$
	IIL	PA to $P E^{* 2}$, PG to $\mathrm{PJ}^{* 2}$	V dD $=3.6 \mathrm{~V}, \mathrm{~V}$ IL $=0.3 \mathrm{~V}$			-30	$\mu \mathrm{A}$
			V dD $=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=2.7 \mathrm{~V}$	-1.0			$\mu \mathrm{A}$
I/O leakage current	IIz	PA to $\mathrm{PE}^{* 2}$, PF0 to PF5, PF7, PG to $\mathrm{PJ}^{* 2}$, AN0 to AN3, CSO, SIO, SOO, SCKO, $\mathrm{RST}^{* 1}$	$\mathrm{V} D \mathrm{D}=3.6 \mathrm{~V}, \mathrm{~V}$ I $=0,3.6 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
Supply current*3	IDD*4	Vdd, Vss	$V_{D D}=3.3 \pm 0.3 \mathrm{~V},$ 20 MHz crystal oscillation $\left(C_{1}=C_{2}=10 \mathrm{pF}\right)$		25	45	mA
	IdDS1		$V D D=3.3 \pm 0.3 \mathrm{~V},$ 20 MHz crystal oscillation ($\mathrm{C}_{1}=\mathrm{C}_{2}=10 \mathrm{pF}$), sleep mode		4.5	8	mA
	IdDS2		VdD $=3.6 \mathrm{~V}$, stop mode			10	$\mu \mathrm{A}$
Input capacitance	Cin	PA to PE, PF0 to PF5, PG to PJ, AN0 to AN3, CSO, SIO, SCKO, EXTAL, $\overline{R S T}$	Clock 1 MHz OV for all pins excluding measured pins		10	20	pF

*1 $\overline{\mathrm{RST}}$ specifies the input current when pull-up resistor has been selected; the leakage current when no resistor has been selected.
*2 PA to PE and PG to PJ specify the input current when pull-up resistor has been selected; the leakage current when no resistor has been selected.
*3 When all output pins are open.
*4 When the upper two bits (PCK1, PCK0) of the clock control register (CLC: 0002FEh) are set to "00" and the LSI is operated in high-speed mode (2 frequency dividing clock).

AC Characteristics

(1) Clock timing
(Topr $=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference)

| Item | Symbol | Pins | Conditions | Min. | Typ. | Max. | Unit |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Main clock base oscillation
 frequency | fEx | XTAL
 EXTAL | Fig.1, Fig.2 VDD $=3.0$ to 5.5V | 1 | | 20 | MHz |
| Main clock base oscillation
 input pulse width | txL,
 txh | EXTAL | Fig.1, Fig.2
 External clock drive | 1 | | 12 | |
| Main clock base oscillation
 input rise time, fall time | txR,
 txF | EXTAL | Fig.1, Fig.2
 External clock drive | 23 | | | ns |

Note) tsys indicates the four values below according to the upper two bits (PCK1,PCKO) of the clock control register (CLC: 0002FEh).
tsys [ns] = 2/fex (PCK1, PCK0 = 00), 4/fex (PCK1, PCK0 = 01), 8/fex (PCK1, PCK0 = 10), 16/fEx (PCK1, PCKO = 11)

Fig.1. Clock timing

Fig.2. Oscillator connection and clock applied conditions
(2) Event count input
(Topr $=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Max.	Unit
Event count input clock pulse width	tEH, $t_{E L}$	$\frac{\overline{\mathrm{EC0}},}{\mathrm{EC1}}$				

Fig.3. Event count input timing
(3) Interruption and reset input
(Topr $=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Con		Min.	Max.	Unit	
External interruption high, low level width	$\begin{aligned} & t_{t \mid H}, \\ & t_{\\| L} \end{aligned}$	$\overline{\mathrm{NMI}}$ INT0 to INT4 KS0 to KS6	Main mode		tsys + 100		ns	
			Sleep mode Stop mode		1		$\mu \mathrm{s}$	
		INT0, INT1, INT4	Noise filter selected	ϕ	2 tsys + 100		ns	
				PS4	32/fex + 100			
				PS6	128/fex + 100			
Reset input low level width	trst	RST	Fig. 5		3tsys + 200		ns	

Fig.4. Interruption input timing

Fig.5. Reset input timing
(4) A/D converter characteristics
(Topr $=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{AV}$ REF $=4.0$ to $\mathrm{AVDD}, \mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Resolution						8	Bits
Linearity error			V dD $=\mathrm{AV} \mathrm{dD}=\mathrm{AV}$ Ref $=5.0 \mathrm{~V}$			± 2	LSB
Absolute error						± 3	LSB
Conversion time	tconv			31/fadc*			$\mu \mathrm{s}$
Sampling time	tsamp			10/fadc*			$\mu \mathrm{s}$
Reference input voltage	Vref	AVref		AVdo - 0.5			V
Analog input voltage	Vian	AN0 to AN7		0			V
AVref current	IREF	AVref	Main mode		0.6	1.0	mA
	Irefs		Sleep mode Stop mode			10	$\mu \mathrm{A}$

(Topr $=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=3.0$ to $3.6 \mathrm{~V}, \mathrm{AVREF}=2.7$ to $\mathrm{AVDD}, \mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Resolution						8	Bits
Linearity error			$V_{D D}=A V_{\text {dD }}=A V_{\text {REF }}=3.3 \mathrm{~V}$			± 2	LSB
Absolute error						± 3	LSB
Conversion time	tconv			31/fadc*			$\mu \mathrm{s}$
Sampling time	tsamp			10/fadc*			$\mu \mathrm{s}$
Reference input voltage	Vref	AVref		AVDD - 0.3			V
Analog input voltage	Vian	AN0 to AN7		0			V
AVref current	IREF	AVref	Main mode		0.4	0.7	mA
	IReFs		Sleep mode Stop mode			10	$\mu \mathrm{A}$

* fadc indicates the below values due to the contents of Bit 6 (CKS) of the A/D control register (ADC: 000131h).

When PS3 is selected, $f_{A D C}=f E x / 8$
When PS4 is selected, $\mathrm{f}_{\mathrm{ADC}}=\mathrm{fEx} / 16$
However, when PS3 is selected, $\mathrm{fex}_{\mathrm{Ex}}$ is 12 MHz or less.

*1 VZt: Value at which the digital conversion value changes from 00 h to 01 h and vice versa.
*2 VFT: Value at which the digital conversion value changes from FEh to FFh and vice versa.
Fig.6. Definition of A/D converter terms
(5) Serial transfer (CH0, CH1, CH2) (Topr $=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pins	Conditions	Min.	Max.	Unit
$\overline{\mathrm{CS}} \downarrow \rightarrow \overline{\mathrm{SCK}}$ delay time	tocsk	$\begin{aligned} & \frac{\overline{\text { SCKO }}}{\text { SCK1 }} \\ & \frac{\text { SCK }}{\text { Son }} \end{aligned}$	External start transfer mode (SCK $=$ output mode)		1.5tsys +100	ns
$\overline{\mathrm{CS}} \uparrow \rightarrow \overline{\mathrm{SCK}}$ float delay time	tocskf	$\begin{aligned} & \frac{\overline{\text { SCKO }}}{\text { SCK1 }} \\ & \frac{\text { SCK }}{} \end{aligned}$	External start transfer mode ($\overline{\mathrm{SCK}}=$ output mode)		1.5tsys +100	ns
$\overline{\mathrm{CS}} \downarrow \rightarrow \mathrm{SO}$ delay time	tocso	$\begin{aligned} & \text { SOO } \\ & \text { SO1 } \\ & \text { SO2 } \end{aligned}$	External start transfer mode		1.5tsys +100	ns
$\overline{\mathrm{CS}} \uparrow \rightarrow \mathrm{SO}$ float delay time	tocsof	$\begin{aligned} & \text { SOO } \\ & \text { SO1 } \\ & \text { SO2 } \end{aligned}$	External start transfer mode		1.5tsys +100	ns
$\overline{\mathrm{CS}}$ high level width	twhcs	$\frac{\frac{\overline{\mathrm{CS} 0}}{\frac{\mathrm{CS} 1}{\mathrm{CS} 2}}}{}$	External start transfer mode	tsys + 100		ns
$\overline{\text { SCK cycle time }}$	tkcy	$\begin{aligned} & \frac{\text { SCKO }}{\text { SCK1 }} \\ & \frac{\text { SCK }}{\text { SCR }} \end{aligned}$	Input mode	2 tsys + 150		ns
			Output mode	8/fex		ns
$\overline{\mathrm{SCK}}$ high, low pulse width	$\begin{aligned} & \mathrm{t}_{\mathrm{kH}} \\ & \mathrm{t}^{2} \end{aligned}$	$\begin{aligned} & \overline{\text { SCK0 }} \\ & \begin{array}{l} \text { SCK1 } \\ \hline \text { SCK2 } \end{array} \end{aligned}$	Input mode	tsys + 60		ns
			Output mode	4/fex-25		ns
SI input data setup time (for SCK \uparrow)	tsık	$\begin{aligned} & \text { SIO } \\ & \text { SI1 } \\ & \text { SI2 } \end{aligned}$	$\overline{\text { SCK }}$ input mode	50		ns
			$\overline{\text { SCK }}$ output mode	100		ns
SI input data hold time (for $\overline{\mathrm{SCK}} \uparrow$)	tksı	$\begin{aligned} & \text { SIO } \\ & \text { SI1 } \\ & \text { SI2 } \end{aligned}$	$\overline{\text { SCK }}$ input mode	tsys +100		ns
			$\overline{\text { SCK }}$ output mode	50		ns
$\overline{\mathrm{SCK}} \downarrow \rightarrow$ SO delay time	tkso	SOO	$\overline{\text { SCK }}$ input mode		tsys +100	ns
			$\overline{\text { SCK }}$ output mode		50	ns
Minimum interval time	tint	$\begin{aligned} & \frac{\text { SCK0 }}{\frac{\text { SCK1 }}{\text { SCK2 }}} \end{aligned}$	$\overline{\text { SCK }}$ input mode	3 tsys +100		ns
			$\overline{\text { SCK }}$ output mode	8/fex		ns

Note) The load condition for the $\overline{\text { SCK }}$ output mode and SO output delay time is $50 \mathrm{pF}+1 \mathrm{TTL}$.
(Topr $=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{V} D=3.0$ to $3.6 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Max.	Unit
$\overline{\mathrm{CS}} \downarrow \rightarrow \overline{\mathrm{SCK}}$ delay time	tocsk	$\begin{aligned} & \overline{\text { SCK0 }} \\ & \overline{\text { SCK1 }} \\ & \hline \text { SCK2 } \end{aligned}$	External start transfer mode ($\overline{\mathrm{SCK}}=$ output mode)		1.5tsys + 200	ns
$\overline{\mathrm{CS}} \uparrow \rightarrow \overline{\mathrm{SCK}}$ float delay time	tocskf	$\begin{aligned} & \overline{\text { SCK0 }} \\ & \frac{\text { SCK1 }}{\text { SCK2 }} \end{aligned}$	External start transfer mode ($\overline{\mathrm{SCK}}=$ output mode)		1.5tsys + 200	ns
$\overline{\mathrm{CS}} \downarrow \rightarrow \mathrm{SO}$ delay time	tocso	$\begin{aligned} & \text { SO0 } \\ & \text { SO1 } \\ & \text { SO2 } \\ & \hline \end{aligned}$	External start transfer mode		1.5tsys + 200	ns
$\overline{\mathrm{CS}} \uparrow \rightarrow \mathrm{SO}$ float delay time	tbcsof	$\begin{aligned} & \text { SO0 } \\ & \text { SO1 } \\ & \text { SO2 } \\ & \hline \end{aligned}$	External start transfer mode		1.5tsys + 200	ns
$\overline{\mathrm{CS}}$ high level width	twhes	$\frac{\overline{\mathrm{CS}} 0}{\overline{\mathrm{CS} 1}}$	External start transfer mode	tsys + 200		ns
$\overline{\text { SCK }}$ cycle time	tkcy	$\begin{aligned} & \overline{\text { SCK } 0} \\ & \overline{\text { SCK1 }} \\ & \hline \text { SCK2 } \end{aligned}$	Input mode	2 tsys +200		ns
			Output mode	8/fex		ns
$\overline{\text { SCK }}$ high, low pulse width	$\begin{aligned} & \mathrm{t}_{\mathrm{KH}} \\ & \mathrm{t}_{\mathrm{KL}} \end{aligned}$	$\begin{aligned} & \overline{\text { SCK0 }} \\ & \hline \text { SCK1 } \\ & \hline \text { SCK2 } \end{aligned}$	Input mode	tsys + 80		ns
			Output mode	4/fex-50		ns
SI input data setup time (for SCK \uparrow)	tsik	$\begin{aligned} & \hline \text { SIO } \\ & \text { SI1 } \\ & \text { SI2 } \end{aligned}$	$\overline{\text { SCK }}$ input mode	80		ns
			$\overline{\text { SCK }}$ output mode	150		ns
SI input data hold time (for $\overline{\text { SCK }} \uparrow$)	tksı	$\begin{aligned} & \text { SIO } \\ & \text { SI1 } \\ & \text { SI2 } \end{aligned}$	$\overline{\text { SCK }}$ input mode	tsys +120		ns
			$\overline{\text { SCK }}$ output mode	70		ns
$\overline{\mathrm{SCK}} \downarrow \rightarrow \mathrm{SO}$ delay time	tkso	$\begin{aligned} & \mathrm{SO} \\ & \mathrm{SO} 1 \\ & \mathrm{SO} 2 \end{aligned}$	$\overline{\text { SCK }}$ input mode		tsys + 200	ns
			$\overline{\text { SCK }}$ output mode		80	ns
Minimum interval time	tint	$\overline{\text { SCK0 }}$	$\overline{\text { SCK }}$ input mode	3tsys + 150		ns
		$\frac{\text { SCK1 }}{\text { SCK2 }}$	$\overline{\text { SCK }}$ output mode	8/fex		ns

Note) The load condition for the $\overline{\text { SCK }}$ output mode and SO output delay time is 50 pF .

Fig.7. Serial transfer CH0, CH1, CH2 timing
(6) Remote control reception
(Topr $=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions		Min.	Max.	Unit
Remote control receive high, low level width	trmc	RMC	Main mode Sleep mode	PS5 selected	128/fex + 100		ns
				PS6 selected	256/fex + 100		
				PS8 selected	1024/fex + 100		

Fig.8. Remote control signal input timing

Appendix
(i) Main oscillation circuit

(ii) Main oscillation circuit

Fig.9. Recommended oscillation circuit

Manufacturer	Model	$\begin{gathered} \mathrm{fEX} \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{C}_{1}(\mathrm{pF})$	$\mathrm{C}_{2}(\mathrm{pF})$	Rd (Ω)	Circuit example	Remarks
MURATA MFG CO., LTD.	CSA4.00MG	4	30	30	0	(i)	
	CSA8.00MTZ093	8					
	CSA10.0MTZ093	10					
	CSA12.0MTZ093	12					
	CST4.00MGW*	4				(ii)	
	CST8.00MTW093*	8					
	CST10.0MTW093*	10					
	CST12.0MTW093*	12					
	CSA16.00MXZ040	16	5	5	0	(i)	$\mathrm{V} D \mathrm{D}=4.0$ to 5.5 V
	CST16.00MXW0C1*	16				(ii)	
	CSA20.00MXZ040	20				(i)	
	CST20.00MXW0H1*	20				(ii)	
RIVER ELETEC CO., LTD.	HC-49/U03	4	27	27	560	(i)	CL $=18.5 \mathrm{pF}$
		8	15	15	330		$C L=13.0 \mathrm{pF}$
		10	10	10	330		$C L=10.5 \mathrm{pF}$
		12	10	10	180		$C L=10.5 \mathrm{pF}$
		16	8	8	0		$\mathrm{CL}=10.0 \mathrm{pF}$
		20	6	6	0		$\mathrm{CL}=8.5 \mathrm{pF}$
KINSEKI LTD.	HC49/U-S	4	22	22	2.2k	(i)	$\begin{aligned} & \hline C L=16 \mathrm{pF} \\ & \mathrm{VDD}=3.0 \text { to } 5.5 \mathrm{~V} \end{aligned}$
		8	10	10	0		$\begin{array}{\|l} \mathrm{CL}=12 \mathrm{pF} \\ \mathrm{VDD}=3.5 \text { to } 5.5 \mathrm{~V} \end{array}$
		10					
		12					
		16					
		20					
TDK Corporation	CCR4.0MC3*	4	38 ($\pm 20 \%$)	38 ($\pm 20 \%$)	0	(ii)	
	CCR8.0MC5*	8	20 ($\pm 20 \%$)	20 ($\pm 20 \%$)	0		
	CCR10.0MC5*	10	20 ($\pm 20 \%$)	20 ($\pm 20 \%$)	0		
	CCR12.0MC5*	12	20 ($\pm 20 \%)$	20 ($\pm 20 \%$)	0		
	CCR16.0MC6*	16	10 ($\pm 20 \%$)	10 ($\pm 20 \%$)	0		V DD $=3.5$ to 5.5 V
	CCR20.0MC6*	20	10 ($\pm 20 \%$)	10 ($\pm 20 \%$)	0		

* Indicates types with on-chip grounding capacitor ($\mathrm{C}_{1}, \mathrm{C}_{2}$). $\mathrm{CCR}^{* * *}$: Surface mounted type ceramic oscillator.

CL : Load capacitor
Mask option table

Item	Content	
Reset pin pull-up resistor	Non-existent	Existent

Characteristics Curve

Idd vs. Vdd
(fex $=20 \mathrm{MHz}$, Topr $=25^{\circ} \mathrm{C}$, Typical)

IdD vs. fex

Package Outline Unit: mm

100PIN QFP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	QFP-100P-L01
EIAJ CODE	QFP100-P-1420
JEDEC CODE	-

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	$42 /$ COPPER ALLOY
PACKAGE MASS	1.7 g

